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First passage time models

Some typical examples from the literature:

Wiener processes:

Whitmore, The Statistician 1986: First-passage-time models
for duration data: regression structures and competing risks.
Whitmore and Schenkelberg, LIDA 1997: Modelling
accelerated degradation data using Wiener diffusion with a
time scale transformation.
Whitmore, Crowder and Lawless, LIDA 1998: Failure inference
from a marker process based on a bivariate Wiener model.

Gamma processes:

Lawless and Crowder, LIDA 2004: Covariates and random
effects in a gamma process model with application to
degradation and failure gamma process modeling.
van Noortwijk, RESS 2009: A survey of the application of
gamma processes in maintenance. (Comprehensive treatment!)
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Wiener process

A stochastic process {W (t), t ≥ 0} is a Wiener process with drift
coefficient ν and variance parameter σ2 if

1 W (0) = 0,

2 {W (t), t ≥ 0} has stationary and independent increments,

3 for every 0 < s < t, W (t)−W (s) is normally distributed with
mean ν(t − s) and variance σ2(t − s).
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Inverse Gaussian distribution

A special feature that makes the Wiener process mathematically
tractable is that the first passage time to a level a > 0 is inverse
Gaussian distributed with density as given below. Note that if we
redefine ν as ν/σ and a as a/σ, then we may assume that σ2 = 1.

f (t; ν, a) =
a√
2π

t−
3

2 exp

{

−(a − νt)2

2t

}

, t > 0,

We denote this distribution by IG(ν, a), the inverse Gaussian
distribution with parameters ν and a. The corresponding survival
function is given by

S(t; ν, a) = Φ

(

a − νt√
t

)

− e2aνΦ

(−a− νt√
t

)

. (1)

where Φ is the standard normal cumulative distribution function.
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Gamma process

A stochastic process {X (t), t ≥ 0} is a (non-stationary) gamma
process with (non-decreasing) shape function v(t) and scale
parameter u > 0 if

1 X (0) = 0,

2 {X (t), t ≥ 0} has independent increments,

3 for every 0 < s < t, X (t)− X (s) is gamma distributed with
shape parameter v(t)− v(s) and scale parameter u.

Special property: X (t) is non-decreasing.

A stationary gamma process has v(t) = vt for a constant v .
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First application:
Dependent competing risks involving failure and PM

Competing risks between failure (X ) and PM (Z )

✲q

✻

Z (PM)

0 X (Failure)
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Threshold models using gamma process

X (t) is a degradation process given as a gamma process.
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Abdel-Hameed, Adv Appl Prob 1987

Decision variables:

inspection interval

PM level (random)

state is observed only at inspections

item is renewed by PM or corrective maintenance according to
which threshold is crossed at inspection
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Threshold models using Wiener processes

Let c be the threshold for failure, while s is a threshold for a
possible PM
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BL and Skogsrud (IIE Transactions 2008)

Wiener process W (t) with positive drift, ν, unit variance σ2 = 1
Ta = hitting time of a > 0.

Let X = Tc

and Z =

{

Ts , with probability q, independent of X
not observed with probability 1− q

Remarks:

Z is a random signs censoring since ”draw” made at Ts is
independent of X

X has an inverse Gaussian distribution
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Recall Cooke’s Random Signs Censoring (StPrLt 1993)

✲q

✻

Z (PM)

0 X (failure time)

Definition:

The event {Z < X} is independent of X

Motivation:

Suppose the item emits some warning of emerging failure,
prior to failure.
If warning signal is observed, then the item will be
preventively maintained at some time Z .

If the event of observing the signal is independent of the
item’s potential failure time, then random signs censoring is
appropriate.
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Identifiability in random signs censoring

Random signs censoring is equivalent to

S̃X (x) ≡ P(X > x |X < Z ) = P(X > x) ≡ SX (x) for all x (∗)

It follows that the marginal distribution of X is identifiable from
competing risks data under random signs censoring.

But the condition (*) may look very unreasonable for many
applications.

(Still it holds in the Wiener-process model by BL and Skogsrud.)
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Extension of model by BL and Skogsrud:
Random PM level S

Let W (t) be as before, let S ∼ N(µS , σ
2
S
), truncated on (0,∞),

independent of W (·)
X = Tc , Z = TS

Random signs censoring holds since
Z < X ⇔ S < c and S and Tc are independent
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Extension of model by BL and Skogsrud:
Random drift

Reconsider basic model with fixed c and s.
Let drift ν vary randomly across units according to some
distribution. (This is similar to frailty for models defined by
conditional intensities).
The drift then needs to be integrated out in the likelihood.
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Likelihood functions for the BL and Skogsrud models

Basic model:

Contribution from an observed X = x : (1− q)f (x ; ν, c)

Contribution from an observed Z = z : q f (x ; ν, s)

Contribution from a censored observation τ :
(1− q)S(τ ; ν, c) + q S(τ ; ν, s)

Random S :

Contribution from an observed X = x : (1− FS(c))f (x ; ν, c)

Contribution from an observed Z = z :
∫

c

0
fS(s)f (z ; ν, s)ds

(now are TS and S dependent).

Contribution from a censored observation τ :
(1− FS(c))S(τ, ν, c) +

∫

c

0
fS(s)S(τ ; ν, s)ds
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Horrocks and Thompson (LIDA 2004): Hospital stays

Similar model for another type of application.

u = healthy discharge from hospital

−l = death

w = transfer to other institution, with probability p
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Horrocks and Thompson

“In some situations, individuals will become eligible for transfer to
another acute care institution once their health status reaches a
moderate level, w , where 0 < w < u. To develop a model, we
assume that once this level is achieved, an individual will be trans-
ferred with probability p. We make the simplifying assumption that
only the first visit of the health level process to w potentially triggers
a transfer.”
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Predicting future failures (Whitmore, Crowder, Lawless
LIDA 1998)

(X (t),Y (t)) is a bivariate Wiener-process, where X (t) is an
unobservable degradation process, while Y (t) is an observed
marker process that is correlated with the true degradation process.
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Predictive inference (Whitmore et al.)

Two types of predictive inference that exploit the observed marker
information are considered. The second is of primary interest but
the first is needed in order to address the second.

1 Prediction of the degradation level X (t) of a surviving item at
time t, given that its marker level at that time is Y (t) = y .

2 Prediction of the future failure time S of an item that is
surviving at time t, given that its marker level at time t is
Y (t) = y .
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Case study: Failure prediction for bearing in offshore wind
turbine based on condition monitoring
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Temperature development of bearing
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Probabilistic modeling of failure development

Y (t) is (observed) temperature at time t (days).

The aim is to predict the future behavior of temperature from
observation of Y (t) from time t = 0 to some given time t0.

The object of main interest for prediction is the time when the
temperature exceeds some threshold a.
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A latent Markov process

Development in stages 1− 2− 3− · · · is modeled as a latent
discrete state process S(t), with S(0) = 0 and S(t) being
stage number at time t.

Assume S(t) is a (non-decreasing) continuous time Markov
process with time-homogeneous transition rates.

The probability mechanism of the temperature process Y (t)
depends on the state S(t).
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The Wiener process based model

The stochastic process Y (t) is a Wiener process under each
“regime”, but parameters may change when S(t) changes.

Natural to assume that the drift parameter ν equals 0 when
S(t) = 0 (”normal conditions”).

Under the failure development through Stages 1 and above,
the drift is assumed to be positive, with values νi when
S(t) = i . νi increases with i . Likewise, the variance parameter
σ2 may depend on the state, but may also be kept constant.
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Special case: The Wiener process with a single change
point

Assumptions:

Y (t) follows a Wiener process with Y (0) = 60

Until time τ (the time of entrance to Stage 1) there is no
drift, ν = 0.

From time τ on, there is a positive drift ν.

T is the time when Y (t) crosses the given level a > 0. We make
the simplifying assumption that

T is always larger than τ . More precisely,

T = inf{t > τ |W (t) ≥ a}
Then conditional on τ and W (τ), T − τ has an Inverse Gaussian
distribution as already described. This corresponds to the time of
hitting the threshold a −W (τ) for a Wiener process with drift ν,
starting at state 0. Thus the conditional expected value of T will
be τ + (a −W (τ))/ν.
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Simulation

Let τ = 1500, σ = 0.05, ν = 0.003. If a = 65, say, then the
expected value of T (crossing 65 degrees) is

1500 +
65− 58

0.003
= 3833
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Practical illustration

Assume it is known by expereince that σ = 0.05, ν = 0.003.

Assume that the process has been observed from time 0 to
time t0. (We consider t0 = 2500, 3000 or 5000)

Problem considered: To estimate τ based on the observation up
to t0.

From the estimate τ̂ , say, we can e.g. estimate the expected time
of crossing the threshold a to be

τ̂ + (a −W (τ̂))/ν,
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A discrete time solution

We use a Bayes approach. Assume (for simplicity) that the
temperature Y (i) is observed at discrete time points, here days,
i = 1, 2, . . . , n.
The differences Xi = Y (i + 1)− Y (i) are independent and
normally distributed.
Now by the assumptions, for an unknown positive integer time τ :

X1, . . . ,Xτ−1 are N(0, σ2)

while Xτ ,Xτ+1, . . . ,Xn are N(ν, σ2).

Following Shiryaev (1963) τ is given a geometric prior with

π(τ) = q(1− q)τ−1 for τ = 1, 2, . . . (2)

where q is a given number. Note that then the prior expectation of
τ is 1/q. q has the reasonable interpretation as the probability of a
switching happening at any given day.
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The posterior distribution

First, the likelihood function for our data is

L(x1, . . . , xn|τ) ∝
{

exp{− 1

2σ2 (
∑

τ−1

i=1
x2
i
+

∑

n

i=τ
(xi − ν)2)} if τ ≤ n

exp
{

− 1

2σ2

∑

n

i=1
x2
i

}

if τ > n

The posterior for τ is proportional to π(τ)L(x1, . . . , xn|τ).

Multiplying L by exp
{

(1/2σ2)
∑

n

i=1
x2
i

}

we hence get the
posterior distribution for τ on the form

π(τ |x1, . . . , xn) ∝ q(1−q)τ−1·
{

exp{ 1

2σ2 [2ν
∑

n

i=τ
xi − (n − τ + 1)ν2]}

1

Bo Lindqvist Modeling by first passage times of stochastic processes



Posterior distributions
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Posterior distributions (non-normalized) for τ , at times n = 2500
and n = 5000. Prior for τ is q = 1/5000.

Mean values for the posteriors are respectively 2275 and 1380 for
n = 2500 and n = 5000, while maximum posterior value for τ is
close to the true value 1500 for both,

Bo Lindqvist Modeling by first passage times of stochastic processes



The continuous time solution

Suppose now that the time parameter t is continuous and that
τ > 0 is a continuous parameter.
This case can be seen as the limiting case when the discrete time
unit tends to 0;

The geometric prior distribution for τ becomes the
exponential distribution,

π(τ) = λe−λτ for τ > 0

where the expected value of the prior distribution is now 1/λ.

The posterior distribution for an observation of W (t) from
t = 0 to t = t0 is seen to be of the form

π(τ |W (t), 0 ≤ t ≤ t0)

∝ λe−λτ ·
{

exp{ 1

2σ2 [2ν(W (t0)−W (τ))− (t0 − τ)ν2]} if τ ≤ t0
1 if τ > t0
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Markov Chain Monte Carlo (MCMC) solution

For the discrete time case considered above, we may need a
normalization of the posterior distribution to finding the
expected posterior value for τ .
Alternatively, one may use an MCMC solution by for example
the Metropolis-Hastings method. There are several possible
ways here, for example using an independence sampler which
draws proposals from the prior distribution. (More efficient
algorithms can of course be thought of).
Suppose now that also ν is an unknown parameter. The
posterior distribution for (τ, ν) is then given by replacing the
prior distribution for τ (or the continuous time version by the
joint prior of (τ, ν), which might be the product of their
marginal priors if they are assumed independent.
If also σ2 is assumed unknown, then the given likelihood
function shows that the given expressions for the posterior
distribution can not be used. Still MCMC is possible. It may,
however, in practice be reasonable to assume that the value of
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A similar Gamma process approach

Fouladirad et al. (RESS 2008) use a gamma process model. The
problem that is studied is that of detecting the point in time, τ ,
where the deterioration process reaches a more severe level, given
by new values for the parameters of the gamma process. (The
article considers the detection of the change as a means for
controlling condition based maintenance).
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Some concluding remarks

It seems that for practical purposes the gamma process is
more useful since it is non-decreasing. Hence it can be used to
model cumulative damage. The Wiener-process on the other
hand fluctuates both up and down with time. This may be
reasonable for some applications, but not for other. One good
reason to use the Wiener process is though that it has
attractive mathematical properties.

The Wiener process becomes more flexible if a
time-transformation is introduced, so that one uses
X (t) = W (Λ(t)) as a mdel (e.g. Whitmore and Schenkelberg
LIDA 1997; Doksum and Høyland Tecnometrics 1992).

The multivariate Wiener process is easy to describe and may
be a useful model when there are several components under
consideration at the same time (for example in the wind
turbine case study). See also the cited paper by Whitmore,
Crowder and Lawless LIDA 1998.
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Continued

Switching models like the one suggested in the wind turbine
case study are common in the literature. A reliability
application is given by Chiquet, Eid and Limnios RESS 2008
(“Modelling and estimating the reliability of stochastic
dynamical systems with Markovian switching).
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